Improved Efficiency for Partial Oxidation of Methane by Controlled Copper Deposition on Surface‐Modified ZSM‐5
نویسندگان
چکیده
The mono(μ-oxo) dicopper cores present in the pores of Cu-ZSM-5 are active for the partial oxidation of methane to methanol. However, copper on the external surface reduces the ratio of active, selective sites to unselective sites. More efficient catalysts are obtained by controlling the copper deposition during synthesis. Herein, the external exchange sites of ZSM-5 samples were passivated by bis(trimethylsilyl) trifluoroacetamide (BSTFA) followed by calcination, promoting selective deposition of intraporous copper during aqueous copper ion exchange. At an optimum level of 1-2 wt % SiO2, IR studies showed a 64 % relative reduction in external copper species and temperature-programmed oxidation analysis showed an associated increase in the formation of methanol compared with unmodified Cu-ZSM-5 samples. It is, therefore, reported that the modified zeolites contained a significantly higher proportion of active, selective copper species than their unmodified counterparts with activity for partial methane oxidation to methanol.
منابع مشابه
Surface Modification of Glassy Carbon Electrode by Ni-Cu Nanoparticles as a Competitive Electrode for Ethanol Electro-Oxidation
In the present study, Nickel-Copper nanoparticles were electrodeposited on glassy carbon electrode (GCE) by using electroplating deposition method. The prepared electrode was characterized by scanning electron microscopy (SEM) and elemental mapping analysis. Results showed that Ni-Cu nanoparticles with a high density are distributed at the surface of the glassy carbon electrode. Subsequentl...
متن کاملContinuous selective oxidation of methane to methanol over Cu - and Fe - modified ZSM - 5 catalysts in a flow reactor
The selective oxidation of methane to methanol is a key challenge in catalysis. Iron and copper modified ZSM-5 catalysts are shown to be effective for this reaction using H2O2 as the oxidant under continuous flow operation. Co-impregnation of ZSM-5 with Fe and Cu by chemical vapour impregnation yielded catalysts that showed high selectivity to methanol (> 92% selectivity, 0.5 % conversion), as ...
متن کاملOrganic template-free synthesis of Ni-ZSM-5 nanozeolite: a novel catalyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE
A novel modified Ni-ZSM-5 nanozeolite was fabricated via an organic template-free hydrothermal route. The average particle size of Ni-ZSM-5 nanozeolite was calculated to be 85 nm by scanning electronic microscopy. Then, Carbon paste electrode (CPE) was modified by Ni-ZSM-5 nanozeolite and Ni2+ ions were then incorporated to the nanozeolite matrix. Electrochemical behavior of this electrode was ...
متن کاملOrganic template-free synthesis of Ni-ZSM-5 nanozeolite: a novel catalyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE
A novel modified Ni-ZSM-5 nanozeolite was fabricated via an organic template-free hydrothermal route. The average particle size of Ni-ZSM-5 nanozeolite was calculated to be 85 nm by scanning electronic microscopy. Then, Carbon paste electrode (CPE) was modified by Ni-ZSM-5 nanozeolite and Ni2+ ions were then incorporated to the nanozeolite matrix. Electrochemical behavior of this electrode was ...
متن کاملCu-ZSM-5: A biomimetic inorganic model for methane oxidation.
The present work highlights recent advances in elucidating the methane oxidation mechanism of inorganic Cu-ZSM-5 biomimic and in identifying the reactive intermediates that are involved. Such molecular understanding is important in view of upgrading abundantly available methane, but also to comprehend the working mechanism of genuine Cu-containing oxidation enzymes.
متن کامل